# Обзор продукции компании VAHLE

Задача передачи электроэнергии и данных между подвижными элементами установок весьма актуальна для масштабных промышленных производств, автоматизированных конвейерных линий и складских терминалов, судостроительных, портовых и технологических кранов. Для ее решения инженерами электротехнической отрасли широко применяются системы контактной передачи, такие как контактные рельсы, шинопроводы различной конструкции, системы кабельного токопровода — кабельные тележки и кабельные барабаны, и бесконтактные системы, основанные на индукционном принципе передачи электроэнергии. Немецкая компания VAHLE, основанная в 1912 г., предлагает свои современные разработки для передачи электроэнергии и данных к мобильным установкам.

## Александр Седунов

san@powerlines.ru

# Обзор контактных рельсов

Благодаря большой площади сечения (например, полностью медные рельсы имеют рабочие токи до 2360 A) и возможности крепления на высоковольтных изоляторах (стеатитовые изоляторы имеют рабочее напряжение до 20 кВ) контактные рельсы позволяют передавать большие мощности к нагрузкам. Кроме того, высокая механическая прочность и отсутствие нетермостойких элементов в конструкции делают их привлекательными для очень жестких условий эксплуатации, например для металлургических и коксовальных заводов.

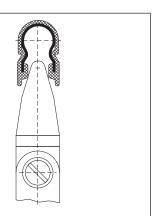
Существуют два варианта исполнения рельсов — открытый неизолированный (рис. 1) и U-образный изолированный (рис. 2).

Открытые неизолированные рельсы имеют несколько конструктивных исполнений:

- со стальной несущей частью и медной головкой;
- с несущей частью из легкого сплава и медной головкой;

- с пластиковой несущей частью и медной головкой;
- полностью медные.

Выбор тех или иных рельсов обусловливается требованиями механической прочности, условиями рабочей среды (рабочие температуры, влажность, наличие паров агрессивных веществ), величиной передаваемых токов и экономической целесообразность ю


U-образные изолированные рельсы могут быть размещены в зонах, где постоянно находятся люди, так как они защищены специальным пластиковым корпусом с пробивной прочностью 30–40 кВ/мм. Все рельсы выполнены согласно стандарту VDE 0100 союза немецких электротехников VDE (Verband Deutscher Elektrotechniker) и соответствуют предъявляемым сегодня требованиям к безопасности шинопроводов, защищены от соприкосновения согласно стандарту VDE 0470, часть 1 (степень защиты IP23), что означает невозможность прикосновения тестового VDE-пальца (рис. 3) к токоведущим частям.



**Рис. 1.** Внешний вид стенда с открытыми контактными рельсами



**Рис. 2.** Внешний вид стенда с изолированными рельсами



**Рис. 3.** Защита от контакта VDE-пальца с находящимися под напряжением частями

#### Обзор шинопроводов

Конструктивно шинопроводы представляют собой несущее пластиковое или алюминиевое основание, внутри которого содержится набор медных шин и подвижный токосъемник. По сравнению с контактными рельсами троллейные шинопроводы имеют следующие особенности:

- компактные размеры и небольшой вес;
- быстрый монтаж, минимальное обслуживание:
- степень защиты от IP23 до IP54. В продуктовой линейке компании VAHLE имеются следующие категории шинопроводов:
- Троллейные в алюминиевом корпусе типа LSV, LSVG (рис. 4), обладающие высокой механической прочностью. Имеется возможность исполнения в анодированном корпусе для установки в условиях воздействия агрессивных сред, исполнение — до 11 полюсов, пригодны для широкого диапазона рабочих температур (–40...+100 °C).
- Троллейные в пластиковом корпусе типа КВН, KSL и МКL (рис. 5), наиболее привлекательные по цене, коррозионностойкие, легкие и удобные в монтаже, исполнение от 4 до 10 полюсов.
- Контактные пластмассовые типа VKS, VKS10 (рис. 6), многополюсные, предназначены для установки в помещениях, защищенных от осадков. Компактная конструкция.
- Троллейные повышенной защиты (рис. 7) используются в портах для запитывания кранов и погрузочных эстакад. Имеют защитные пластины, которые самостоятельно открываются и закрываются при перемещении крана. Могут устанавливаться в уровень с нулевой отметкой для возможности прохождения по ним автотранспорта.

В настоящее время существует широкий ассортимент шинопроводов. Поэтому становится возможным выбрать подходящее оборудование для любых задач и условий применения. Для эксплуатации при низких температурах в большинстве шинопроводов размещается специальный обогревающий кабель, подключаемый к контроллеру обогрева. Допустимая скорость движения мобильного объекта относительно стационарного шинопровода зависит от типа применяемого токосъемника и может

достигать 450 м/мин. (для VKS10). Для облегчения очистки от пыли внутренних частей шинопроводов разработаны специальные варианты токосъемников для подключения к пылесосам (рис. 8), а также чистящие каретки.

### Кабельные тележки

Кабельные тележки являются элементами подвесных систем и служат для подводки к подвижным электроприемникам линий электропередачи в виде плоских или круглых кабелей, а также рукавов для газообразных или жидких сред. Для защиты от внешних воздействий, таких как влажность, пыль и оледенение, существуют кабельные тележки для монтажа на ходовые рельсы закрытого типа. Ходовые рельсы могут быть изогнуты согласно характеру изменения траектории пути с учетом минимальных радиусов изгиба и провисаний кабеля. Все кабельные тележки VAHLE изготавливаются в соответствии с предписаниями



**Рис. 4.** Троллейный шинопровод типа LSV в алюминиевом корпусе



**Рис. 6.** Контактные шинопроводы типа VKS



**Рис. 8.** Специальная насадка для очистки шинопровода от пыли

VDE. Благодаря высокой гибкости и малым допустимым радиусам изгибания плоские кабели более предпочтительны: таким образом минимизируется длина необходимого участка накопителя, поскольку обычно вполне достаточно длины устройства, обеспечиваемой электроприемником, например крановой тележкой.

Преимущества систем на основе кабельных тележек (рис. 9):

- конкурентоспособная цена;
- возможность применения в условиях большой запыленности;
- возможность взрывобезопасного исполнения:
- возможность подвода большого количества полюсов при использовании соответствуюшего кабеля.

# Кабельные барабаны

Кабельные барабаны применяются при невозможности или неэффективности приме-



**Рис. 5.** Троллейный шинопровод типа КВН в пластиковом корпусе



**Рис. 7.** Троллейные шинопроводы повышенной защиты



**Рис. 9.** Пример применения кабельных тележек для поддержания плоского кабеля

<del>-----</del> 51



Рис. 10. Пружинные кабельные барабаны

нения кабельных тележек или шинопроводов. Существуют два типа кабельных барабанов:

- с пружинным приводом;
- с электроприводом.

Пружинные кабельные барабаны (рис. 10) применяются для подключения козловых кранов, магнитных грузоподъемных устройств, электроэкскаваторов, мобильной строительной электротехники и в других случаях, когда используются низковольтные и относительно легкие кабели. Для работы с высоковольтными (до 20 кВт) или тяжелыми кабелями нужны кабельные барабаны с электроприводом (рис. 11). К ним прибегают при необходимости запитывания мощных портовых кранов, электровозов или толкателей на автономных железных дорогах крупных производственных или добывающих предприятий.

# Бесконтактная система передачи электроэнергии

Особое место среди систем передачи электроэнергии и данных к мобильным потребителям занимает CPS (Contactless Power System) — индукционная система бесконтактной передачи электроэнергии компании VAHLE, действующая по принципу открытого трансформатора (рис. 12). Успешный опыт применения данной системы во всем мире де-



Рис. 11. Кабельные барабаны с электроприводом

лает ее интересной для самых разнообразных применений, например:

- производственные и складские транспортные системы;
- скоростные лифты;
- электрические подвесные дороги;
- краны;
- подъемно-транспортное оборудование. В настоящее время с применением CPS реализованы такие проекты, как:
- реконструированная после пожара система подачи питания для оборудования кабины лифта Останкинской телебашни (Россия);
- система транспортировки деталей для автомобильного завода BMW в Спартанбурге (США);
- полностью автоматическая система скоростной видеосъемки для мирового чемпионата по гребле, проходившего в Дуйсбурге (Германия).

CPS имеют следующие особенности:

- низкие расходы на обслуживание, износостойкость и высокая степень электрической безопасности благодаря отсутствию открытых контактных частей;
- отсутствие ограничений на скорость и ускорение мобильного потребителя;
- отсутствие шума от контактных щеток благодаря передаче тока бесконтактным способом;
- работа при сравнительно больших воздушных зазорах между индукционной катушкой и первичной обмоткой;
- отсутствие ограничений на эксплуатацию в условиях воздействия пыли, воды, льда, ветра и т. д.;
- высокая эффективность передачи электроэнергии (до 80% и выше);
- возможность применения для передачи данных и отслеживания маршрута транспорта;
- простота «подгонки» даже при сложных схемах расположения;
- отсутствие загрязнения окружающей среды (по сравнению с системами транспорта на ДВС);
- возможность подзарядки аккумуляторных батарей во время движения, что способствует отсутствию простоя электротранспорта.

# Система передачи данных по волноводу

SMG (Slotted Microwave Guide) — система передачи данных в волнопроводе (рис. 13) посредством СВЧ-излучения частотой 2,4 ГГц,



Рис. 13. Участок волновода системы SMG



**Рис. 12.** CPS на автосборочном производстве. Первичная линия проложена в полу вдоль пути следования и защищена

разработанная компанией VAHLE, позволяет передавать данные со скоростью до 10 Мбит/с. В настоящее время существуют модули адаптации, позволяющие использовать систему для передачи таких распространенных цифровых интерфейсов, как RS-232, RS-485, Ethernet (10 Мбит/с), так и аналоговых сигналов — аудиосигнал полосой 0,3—3,4 кГц, видеосигнал полосой 5 МГц.

Особенности технологии передачи данных SMG:

- отсутствие износа, так как передача данных происходит бесконтактно;
- передача данных без потерь на скоростях до 10 Мбит/с;
- одновременное использование до шести каналов в полнодуплексном режиме;
- обеспечение связи между трансиверами при длине участка передачи данных до 1000 метров без применения дополнительных усилителей;
- простота замены типа передаваемого сигнала благодаря легкосменным модулям на передающей и принимающей сторонах;
- качество передачи данных не зависит от скорости считывающего устройства (на скорости до 600 м/мин.);
- отсутствие зависимости процесса передачи данных от таких воздействий, как температура, влажность, облачность, пыль и др.

Отдельно можно отметить, что, согласно Постановлению от 25 июля 2007 г. № 476 о внесении изменений в постановление Правительства Российской Федерации от 12 октября 2004 г. № 539 «О порядке регистрации радиоэлектронных средств и высоко-

частотных устройств», использование оборудования беспроводного доступа в полосе радиочастот 2400-2483,5 МГц с мощностью излучения передающих устройств до 100 мВт включительно лицензированию не подлежит. Поэтому эти полосы частот широко используются для таких беспроводных технологий, как Bluetooth, ZigBee, Wi-Fi, и могут быть заняты в зоне использования системы. Но поскольку при использовании SMG для передачи данных используется закрытый волновод, обеспечивается не только высокая защищенность от воздействия внешних помех, но и совместимость с устройствами, использующими эти частоты вне волновода (пространственное разделение среды передачи данных).

# Система передачи данных по питающим линиям

Специально для случаев, когда данные предподчительно передавать по силовым линиям (220 В, 50 Гц) шинопроводов, был разработан PLC-модем (Power Line Communication Modem) под торговой маркой VAHLE POWERCOM. Модем (рис. 14) обеспечивает передачу данных стандарта RS-485 на скорости до 19200 бит/с при протяженности линии до 5000 метров.

#### Заключение

Приведенная в данной обзорной статье информация позволяет сориентироваться среди многообразия решений для подведения электроэнергии к движущимся нагруз-



**Рис. 14.** Внешний вид модема VAHLE POWERCOM

кам. В политике продаж компании VAHLE очень важная роль уделяется сервису, что подразумевает в большей степени не продажу отдельных компонентов, а подготовку комплексных технических решений, когда инженеры компании предлагают оптимальный набор комплектующих, наиболее точно соответствующий потребности заказчика.

# Литература

- 1. www.vahle.com
- 2. Стандарт VDE 0100.
- 3. Стандарт VDE 0470.

www.power-e.ru — 53